Nueva téoria de la evolución
Response to Turning Fins Into Hands
viernes, enero 25, 2013, 04:51 AM
i57b Turning Fins Into Hands, January 25, 2013

The following article is a transcription of one written by Carl Zimmer by the name of “Turning Fins Into Hands” and was published on line by Discover, December 10, 2012. At the end you will find my commentaries titled “Felix Rocha-Martinez’s way of Turning Fins Into Hands.”

Turning Fins Into Hands

Your hands are, roughly speaking, 360 million years old. Before then, they were fins, which your fishy ancestors used to swim through oceans and rivers. Once those fins sprouted digits, they could propel your salamander-like ancestors across dry land. Fast forward 300 million years, and your hands had become fine-tuned for manipulations: your lemur-like ancestors used them to grab leaves and open up fruits. Within the past few million years, your hominid ancestors had fairly human hands, which they used to fashion tools or digging up tubers, butchering carcasses, and laying the groundwork for our global dominance today.

We know a fair amount about the transition from fins to hands thanks to the moderately mad obsession of paleontologists, who venture to inhospitable places around the Arctic where the best fossils from that period of our evolution are buried. (I wrote about some of those discoveries in my first book, At the Water’s Edge.)

By comparing those fossils, scientists can work out the order in which the fish body was transformed into the kind seen in amphibians, reptiles, birds, and mammals–collectively known as tetrapods. Of course, all that those fossils can preserve are the bones of those early tetrapods. Those bones were built by genes, which do not fossilize. Ultimately the origin of our hands is a story of how those fin-building genes changed, but that’s a story that requires more evidence than fossils to tell.

A team of Spanish scientists has provided us with a glimpse of that story. They’ve tinkered with the genes of fish, and turned their fins into proto-limbs.

Before getting into the details of the new experiment, leap back with me 450 million years ago. That’s about the time that our early vertebrate ancestors–lamprey-like jawless fishes–evolved the first fins. By about 400 million years ago, those fins had become bony. The fins of bony fishes alive today–like salmon or goldfish–are still built according to the same basic recipe. They’re made up mostly of a stiff flap of fin rays. At the base of the fin, they contain a nubbin of bone of the sort that makes up our entire arm skeleton (known as endochondral bone). Fishes use muscles attached to the endochondral bone to maneuver their fins as they swim.

Our own fishy ancestors gradually modified this sort of fin over millions of years. The endochondral bone expanded, and the fin rays shrank back, creating a new structure known as a lobe fin. There are only two kinds of lobe fin fishes left alive today: lungfishes and coelacanths. After our ancestors split off from theirs, our fins became even more limb like. The front fins evolved bones that corresponded in shape and position to our ulna and humerus.

A 375-million-year-old fossil discovered in 2006, called Tiktaalik, had these long bones, with smaller bones at the end that correspond to our wrist. But it still had fin rays forming fringe at the edges of its lobe fin. By 360 million years ago, however, true tetrapods had evolved: the fin rays were gone from their lobe fins, and they had true digits. (The figure I’m using here comes from my more recent book, The Tangled Bank.)

Both fins and hands get their start in embryos. As a fish embryo grows, it develops bumps on its sides. The cells inside the bumps grow rapidly, and a network of genes switches on. They not only determine the shape that the bump grows into, but also lay down a pattern for the bones which will later form.

Scientists have found that many of the same genes switch on in the limb buds of tetrapod embryos. They’ve compared the genes in tetrapod and fish embryos to figure out how changes to the gene network turned one kind of anatomy into the other.

One of the most intriguing differences involves a gene known as 5′Hoxd. In the developing fish fin, it produces proteins along the outer crest early on in its development. The proteins made from the gene then grab other genes and switch them on. They switch on still other genes, unleashing a cascade of biochemistry.

Back when you were an embryo, 5′Hoxd also switched on early in the development of your limbs. It then shut off, as it does in fish. But then, a few days later, it made an encore performance. It switched back on along the crest of the limb bud a second time. This second wave of 5′Hoxd marked a new pattern in your limb: it set down the places where your hand bones would develop.

Here, some scientists proposed, might be an important clue to how the hand evolved. It was possible that mutations in our ancestors caused 5′Hoxd to turn back on again late in development. As a result, it might have added new structures at the end of its fins.

If this were true, it would mean that some of the genetic wherewithal to build a primitive hand was already present in our fishy ancestors. All that was required was to assign some genes to new times or places during development. Perhaps, some scientists speculated, fishes today might still carry that hidden potential.

Recently Renata Freitas of Universidad Pablo de Olavide in Spain and her colleagues set out to try to unlock that potential. They engineered zebrafish with an altered version of the 5′Hoxd gene, which they could switch on whenever they wanted by dousing a zebrafish embryo with a hormone.

The scientists waited for the fishes to start developing their normal fin. The fishes expressed 5′Hoxd at the normal, early phase. The scientists waited for the gene to go quiet again, as the fins continued to swell. And then they spritzed the zebrafish with the hormone. The 5′Hoxd gene switched on again, and started making its proteins once more.

The effect was dramatic. The zebrafish’s fin rays became stunted, and the end of its fin swelled with cells that would eventually become endochondral bone.

These two figures illustrate this transformation. The top figure here looks down at the back of the fish. The normal zebrafish is to the left, and the engineered one is to the right. The bottom figure provides a close-up view of a fin. The blue ovals are endochondral bone, and the red ones display a marker that means they’re growing quickly.

One of the most interesting results of this experiment is that this single tweak–a late boost of 5′Hoxd–produces two major effects at once. It simultaneously shrinks the outer area of the fin where fin rays develop and expands the region where endochondral bone grows. In the evolution of the hand, these two changes might have occurred at the same time.

It would be wrong to say that Freitas and her colleagues have reproduced the evolution of the hand with this experiment. We did not evolve from zebrafishes. They are our cousins, descending from a common ancestor that lived 400 million years ago. Ever since that split, they’ve undergone plenty of evolution, adapting to their own environment. As a result, a late boost of 5′Hoxd was toxic for the fishes. It interfered with other proteins in the embryos, and they died.

Instead, this experiment provides a clue and a surprise. It provides some strong evidence for one of the mutations that turned fins into tetrapod limbs. And it also offers a surprise: after 400 million years, our zebrafish cousins still carry some of the genetic circuits we use to build our hands.

Felix Rocha-Martinez’s way of Turning Fins Into Hands

In March 1997's issue of Discover magazine, page 52, there is an article titled “When Life Was Odd”, from it I am extracting the following information:

1. The Ediacarans have been a source of scientific puzzlement since they were discovered more than a century ago. They were named after the hills in southern Australia that harbor a large cache of the fossils that was found in 1940, but Ediacaran impressions are found in rocks all over the world.

2. These impressions in rocks have been found in England, Africa, Russia, Canada, Mexico and in many other places, they range in size from a fraction of an inch long to several feet. Many are marked with radiating, concentric, or parallel creases; others are inscribed within filigree of delicate branches. They seem to have no heads or tails, insides or outsides, fronts or backs; had no obvious circulatory, nervous or digestive systems. They were without teeth, eyes and almost everything we recognize in a body, including bones, muscles, mouths and internal organs. In the middle they had a depression that would indicate that whatever made it had a bulge. The Ediacarans are nearly impossible to classify. Paleontologists can not even agree on whether they were animals or vegetables, single-celled or multi-cellular. The fossils have in the middle a depression that would indicate a bulge in whatever caused such impression.

3. They constitute the earliest and oddest examples of complex life and are interesting in their own right. They have the appearance of a deformed coin.

4. They were first found in the 1860's in a quarry in England and were dismissed as inorganic material. Then in the 1940's they were found in the Ediacara Hills, in southern Australia, from where they get their name. The most famous was an Ediacaran named Dickinsonia that could be the size of a tack or as large as a tablecloth. In the 1950's, the Australian Paleontologist Martin Glaessner of the University of Adelaide made the bold assertion that most of the Ediacaran organisms were the earliest members of animal families still alive today. This concept prevailed until 1982.

In one of the stages of gestation we have the appearence of a 2 layered deformed coin and by the process of invagination we aquire a bump running through the middle of the waffer. Could it be that the bump we have in that stage of gestation is the depression of the Dikinsonia?

With the new evolutionary theory by jumps that is here proposed, science will have a tool that could well help resolve some of the unknown factors presented about the Ediacarans. Surely, we have to study the development and gestation of species after species and have a gigantic comparative with all the images of the process and compare the found Ediacarans with those images.

In the following mutation, the elliptic waffer folded up itself along the major axis, welding the edges. One end of the flat elliptic formation was transformed into a head and the other end into a tail. The central interior part of this cylindrical formation, became a simple digestive system. The mutation has the appearance of a sea horse: big head and tail, a potbelly and without extremities.

Definitely, all human beings passed through a stage of evolution with the appearance of a sea horse. From this transformation, we all carry the evidence of the mutation.

Strange likeness, sea horses are similar to one of our gestation [evolution] stages.

Everybody, male and female, and all other mammals, have a scar that goes from the throat all the way down to the genital zone. Every time we have two skins being stitched together, we have a scar —that’s why my book is named “Scars”, they are the vestiges that remind us of our evolution without depending on fossils, and everybody has them. By the way, in women when they are in last months of pregnancy, it seems that the belly is going to burst open by the scar, but, of course, it never happens. Also men with a hairy chest have a partition line in which the hairs get closer or separated precisely over the scar. Did we have branquia and a large intestine at this stage? If we had branquia, that would also settle the question of aquatic origin. If we had only small intestine that would settle the question of the origin of the appendix. In another mutation the large intestine was pegged on not at the end, in the annus, but higher up. That distance of small intestine from the old annus to where the large intestine was pegged on was transformed into an appendix. At this point of evolution we had gonads close to the kidneys and we were self reproducing, the same as some of the sea horses.

As you can see, in this gestation, evolution, stage, there is not any evidence of the existence of extremities.

The book: "Embriología Humana" (Human Embryology), of PhD Keith L Moore, and translated to Spanish by PhD Homero Vela Treviño, on page 327, it shows figure 17-1 and its description:

A. Bud of an arm. B. Plaque of a hand in paddle. C. Digital rays. D. Membranes between digital rays. E. Fingers united by membranes. F. Separated fingers. G. Bud of a leg. H. Plaque of a foot in paddle. I. Digital rays. J. Membranes between digital rays. K. Fingers united by membranes. L. Separated fingers.

B. Fig. 17-1 Schemes in which it is illustrated the different stages of development of hands and feet from the fourth to the seventh week. The first stages are similar for hands and feet, to the exception of the development of the hands before the feet by a few days.

With this information I do not have to work out, define, infer, decipher the order of the changes. Nature is showing it with all clarity. All we have to do is to learn to listen and observe nature.

Question: Where are Darwinists going to find fossils stage by stage of evolution that does not force them to work out, define, infer, decipher the order of the changes?

With my theory, there, in the processes carried out in the ovaries, testicles, spawn and gestation, each species according to its own, you can find the whole binnacle of evolution.

Without a doubt, in this study the author gets close, occasionally, to my concepts. Nevertheless, immediately he lets it be known that he does not know the pattern of changes.

When will Darwinists prefer the shame of having been wrong for so long and participate in the new studies, than the shame of continuing being wrong and stay in the past?

Available for talks over my theory

Felix Rocha-Martinez
Saltillo, Coahuila, Mexico
| enlace permanente | ( 3 / 794 )
La conversión de aletas en manos
viernes, enero 25, 2013, 03:59 AM
e57b La conversión de aletas en manos, 25 de enero de 2013

El siguiente artículo es mi traducción a uno escrito por Carl Zimmer y publicado por Discover en línea el 10 de diciembre de 2012. Al final encontrarán mis comentarios titulados “La conversión de aletas en manos a la Félix Rocha Martínez

La conversión de aletas en manos

Sus manos tienen, hablando en términos generales, 360 millones de años de antigüedad. Antes de eso, eran aletas, que sus peces antepasados utilizaban para nadar a través de océanos y ríos. Una vez que de esas aletas brotaron dedos, pudieron impulsar a sus antepasados, similares a las salamandras, por terreno seco. Con el avance rápido de 300 millones de años, sus manos se habían afinado para la manipulación: sus antepasados, similares a los lémures las utilizaban para agarrar las hojas y abrir los frutos. En los últimos pocos millones de años, sus antepasados homínidos tenían manos bastante humanas, que usaron para crear herramientas, desenterrar tubérculos, destazar presas cazadas, y sentar las bases para nuestro dominio global de hoy.

Sabemos bastante sobre la transición de aletas a manos, gracias a la obsesión moderadamente loca de paleontólogos, que se aventuran a lugares inhóspitos de todo el Ártico, donde están enterrados los mejores fósiles de este período de nuestra evolución. (Escribí sobre algunos de esos descubrimientos en mi primer libro “At the Water’s Edge”, A la orilla del agua).

Al comparar los fósiles, los científicos pueden calcular el orden en que se transformó el cuerpo de los peces en el tipo visto en anfibios, reptiles, aves y mamíferos, conocidos colectivamente como los tetrápodos. Por supuesto, lo único que puede preservar esos fósiles son los huesos de los primeros tetrápodos. Los huesos fueron construidos por los genes, que no se fosilizan. En definitiva, el origen de nuestras manos es una historia de cómo cambiaron los genes constructores de aleta, pero eso es una historia que requiere más evidencia que fósiles para contar.

Un equipo de científicos españoles nos ha proporcionado una visión de la historia. Han jugado con los genes de los peces, y convirtieron las aletas en proto-extremidades.

Antes de entrar en detalles del nuevo experimento, regrese de nuevo conmigo 450 millones de años. Esa es aproximadamente la época en que nuestros primeros antepasados vertebrados, -similares a las lampreas, sin mandíbula- desarrollaron las primeras aletas. Hace aproximadamente unos 400 millones de años, esas aletas se hicieron óseas. Las aletas óseas de los peces vivos –como el salmón o el pez de colores de hoy, todavía se construyen de acuerdo a la misma receta básica. Están hechos principalmente por una solapa rígida de rayos de aleta. En la base de la aleta, contiene una orilla saliente de hueso de la especie que constituye el esqueleto de todo el brazo (conocido como hueso endocondral). Los peces utilizan músculos que se insertan en el hueso endocondral para maniobrar sus aletas mientras nadan.

Nuestros propios peces antepasados modificaron gradualmente este tipo de aleta durante millones de años. El hueso endocondral se expandió, y los rayos de la aleta se encogieron hacia atrás, creando una nueva estructura conocida como una aleta lóbulo. Sólo hay dos tipos de peces de aleta lóbulo que sobreviven hoy: los peces pulmonados y los celacantos. Después de que nuestros antepasados se separaron de los suyos, nuestras aletas se transformaron más similares a extremidades. Las aletas delanteras evolucionaron en huesos que correspondían en forma y posición a nuestro cúbito y húmero.

Un fósil de 375 millones de años descubierto en 2006, llamado Tiktaalik, tenía estos huesos largos, con huesos más pequeños en el extremo que corresponden a nuestra muñeca. Pero todavía había rayos de la aleta formando flecos en los bordes de la aleta lóbulo. Para el tiempo de hace 360 millones de años, sin embargo, los verdaderos tetrápodos habían evolucionado: los rayos de la aleta habían desaparecido de sus aletas lobulares, y tenían verdaderos dedos. (La figura que estoy usando aquí viene de mi libro más reciente, “The Tangled Bank”, El banco enmarañado).

Ambas aletas y manos tienen su inicio en los embriones. Cuando crece un embrión de pez, desarrolla protuberancias en sus lados. Las células dentro de las protuberancias crecen rápidamente, y se activa una red de genes. Ellos no sólo determinan la forma en que se convierte la protuberancia, sino que también establecen un patrón para los huesos que más tarde formarán.

Los científicos han encontrado que muchos de los mismos genes se encienden en las protuberancias de los embriones de tetrápodos. Ellos han comparado los genes en embriones de tetrápodos y de peces para averiguar cómo los cambios en la red de genes convirtieron una especie de anatomía en otra.

Una de las diferencias más interesantes consiste en un gene conocido como 5'Hoxd. En la aleta en desarrollo de un pez, produce proteínas a lo largo de la cresta exterior desde el principio en su desarrollo. Las proteínas producidas provenientes del gene continúan, se apoderan de otros genes y los activan. Se encienden todavía otros genes y se desencadena una cascada bioquímica.

Antes, cuando usted era un embrión, el 5'Hoxd también se activó temprano en el desarrollo de sus extremidades. Después, se apagó, como lo hace en el pescado. Pero entonces, unos días más tarde, hizo una actuación repetitiva. Se volvió a encender a lo largo de la cresta de la protuberancia por segunda vez de lo que luego se convertiría en extremidad. Esta segunda ola de 5'Hoxd marcó una nueva pauta en su extremidad: estableció los lugares donde se desarrollarían los huesos de su mano.

Aquí, algunos científicos propusieron, podría ser un indicio importante de cómo evolucionó la mano. Cabe la posibilidad de que las mutaciones en nuestros antepasados causaran que el 5'Hoxd se volviera encender más tarde en el desarrollo. Como resultado, pudo haber añadido nuevas estructuras en el extremo de las aletas.

Si esto fuera cierto, significaría que algunos de los medios genéticos para construir una mano primitiva ya estaban presentes en nuestros peces antepasados. Todo lo que se necesita es asignar algunos genes a los nuevos tiempos o lugares durante el desarrollo. Tal vez, algunos científicos especulan, los peces de hoy todavía podrían llevar ese potencial oculto.

Recientemente Renata Freitas de la Universidad Pablo de Olavide en España y sus colegas se propusieron tratar de desbloquear ese potencial. Diseñaron un pez cebra con una versión alterada del gene 5'Hoxd, que podían encender cuando quisieran al empapar un embrión de pez cebra con una hormona.

Los científicos esperaron a que los peces comenzaran a desarrollar su aleta normal. Los peces expresaron su gene 5'Hoxd en la fase normal temprana. Esperaron que el gene se quedara de nuevo en silencio, mientras las aletas continuaban aumentando. Y luego rociaron el pez cebra con la hormona. El gene 5'Hoxd se encendió de nuevo, y comenzó a fabricar sus proteínas una vez más.

El efecto fue dramático. Los rayos de la aleta del pez cebra quedaron impactados, detenido el desarrollo, y el extremo de su aleta se hinchó con células que se convertirían en hueso endocondral.

Estas dos figuras (El artículo original, Discover virtual, 10 de diciembre 2012) ilustran esta transformación. La figura superior aquí se ve hacia abajo en la parte posterior del pez. El pez cebra normal está a la izquierda, y el manipulado está a la derecha. La figura de abajo proporciona una vista más cercana de una aleta. Los óvalos azules son hueso endocondral, y los rojos muestran un marcador que significa que están creciendo rápidamente.

Uno de los resultados más interesantes de este experimento es que una simple modificación –un último impulso del gene 5'Hoxd-produce dos efectos importantes a la vez. Al mismo tiempo reduce el área exterior de la aleta, donde se desarrollan los rayos de la aleta y se expande la región donde crece hueso endocondral. En la evolución de la mano, estos dos cambios pudieron haber ocurrido al mismo tiempo.

Sería un error decir que Freitas y sus colegas han reproducido la evolución de la mano con este experimento. Nosotros no evolucionamos del pez-cebra. Ellos son nuestros primos, que descienden de un antepasado común que vivió hace 400 millones de años. Desde que se dividieron, se han sometido a un montón de evoluciones, adaptándose a su propio entorno. Como resultado, un impulso tardío de 5'Hoxd fue tóxico para los peces. Esto interfirió con otras proteínas en los embriones, y murieron.

En cambio, este experimento proporciona una pista y una sorpresa. Proporciona cierta evidencia fuerte para una de las mutaciones que convirtió las aletas en extremidades de tetrápodos. Y también ofrece una sorpresa: después de 400 millones de años, nuestros primos los pez cebra, aún tienen algunos de los circuitos genéticos que utilizamos para construir nuestras manos.

Conversión de aletas a manos a la Félix Rocha Martínez

En la revista Discover, edición de marzo de 1997, en la página 52 se publica un artículo denominado "Cuando la vida era rara" (When Life Was Odd). De ahí extraigo la siguiente información:

1. Los ediacaranes han sido una fuente de perplejidad científica desde que fueron descubiertos hace más de un siglo. Se llaman así por las colinas del sur de Australia donde se encontró un yacimiento importante en 1940, pero las impresiones en rocas de ediacaranes han sido encontradas en todo el mundo.

2. Estas impresiones en rocas que han sido localizadas en Inglaterra, África, Rusia, Canadá, México y en muchos otros lugares, tienen un rango de dimensión que va desde una fracción de centímetro hasta varios decímetros. Muchos tienen marcas de pliegues radiantes, concéntricos o paralelos; otros están inscritos dentro de una filigrana de delicadas ramas. Parecen no tener cabeza o cola y partes internas o externas, anteriores o posteriores; no tenían sistemas circulatorios, nerviosos o digestivos que fueran obvios. Sin dientes, ojos y casi cualquier cosa que podamos reconocer en un cuerpo, incluyendo huesos, músculos, boca y órganos internos, los ediacaranes son casi imposibles de clasificar. Los paleontólogos no pueden ni siquiera ponerse de acuerdo sobre si son animales o vegetales, de una célula o multicelulares y en medio tienen una depresión que indicaría un abultamiento de lo que haya hecho tal impresión.

3. Constituyen los fósiles más antiguos y los ejemplos más extraños de vida compleja y son interesantes por méritos propios. Tienen la apariencia de una moneda deforme.

4. Primero fueron encontrados en la década de 1860, en una cantera en Inglaterra y fueron descartados como material inorgánico. Después, en la década de 1940 fueron encontrados en las colinas de Ediacara, en el sur de Australia, de donde toman su nombre. El más famoso fue un ediacarán denominado “dikinsonia”, que pudiera ser del tamaño de la cabeza de un alfiler o tan grande como un mantel de mesa. En la década de 1950, el paleontólogo australiano Martin Glaessner de la Universidad de Adelaide, hizo la audaz afirmación de que la mayoría de los ediacaranes eran los miembros más antiguos de familias de animales que todavía existen. Este concepto prevaleció hasta 1982.

En una de las etapas de nuestra gestación tenemos la apariencia de una moneda deforme de 2 capas y por el proceso de invaginación adquirimos un borde por el centro de la oblea. ¿Acaso pudiera ser que el borde que tenemos en esa etapa de gestación es la depresión existente en la dikinsonia?

Con la nueva teoría evolutiva por saltos por mí propuesta, la ciencia tendrá una herramienta que bien pudiera ayudar a resolver las incógnitas presentadas por los ediacaranes. Ciertamente, se tendrá que estudiar el desarrollo y la gestación de especie tras especie, tener un comparativo gigante con todas las imágenes del proceso y comparar los fósiles encontrados de ediacaranes con estas imágenes.

En la siguiente mutación, la oblea elíptica con un bordo central por invaginación se dobló sobre su eje más largo, soldando las orillas. Uno de los extremos se transformó en la cabeza y el otro en la cola. La parte central interior de esta formación cilíndrica se convirtió en un aparato digestivo simple. La mutación en general tiene la apariencia de un caballito de mar: una cabeza y cola grandes, botijón y sin extremidades. Definitivamente, todos los seres humanos pasamos a través de una etapa de evolución con la apariencia de un caballito de mar. De esta transformación, todos cargamos la evidencia de la mutación.

Extraña similitud, los caballitos de mar son similares a una de nuestras etapas de gestación, evolución.

Todos, hombres y mujeres, y todos los demás mamíferos tenemos una cicatriz que va de la garganta a la zona genital. Cada vez que se sueldan dos pieles tenemos una cicatriz —por eso, el libro se llama “Cicatrices”. Éstas son los vestigios que nos recuerdan nuestra evolución sin depender de los fósiles, y todos las tenemos. Por cierto, en las mujeres, cuando están en los últimos meses de embarazo, pareciera que la cicatriz a medio vientre se pudiera abrir, pero por supuesto esto no sucede. También los hombres de mucho pelo en pecho tienen una línea muy notoria que va de la garganta a la zona genital en la cual el pelo o se aproxima más o se aleja más precisamente sobre la cicatriz. ¿Tuvimos branquias e intestino grueso en esta etapa de gestación? Si tuvimos las branquias significaría una prueba más de nuestro origen acuático. Si sólo tuvimos intestino delgado, eso definiría el origen del apéndice. En otra mutación el intestino grueso fue añadido por invaginación, pero no al final, en el ano, sino un poco arriba. La distancia del intestino delgado entre el antiguo ano y el lugar en donde se añadió el intestino grueso, se convirtió en el apéndice. En este punto de la evolución tuvimos gónadas cerca de los riñones y éramos autorreproductivos, al igual que algunos de los caballitos de mar.

Como se puede observar, en esta etapa de gestación, etapa de evolución, no hay evidencias de extremidades.

El libro “Embriología Humana”, del Dr. Keith L. Moore y traducido por el Dr. Homero Vela Treviño, en la página 327, muestra la figura 17-1 y su pie de foto:

1. A. Esbozo del brazo. B. Placa de la mano en pala. C. Rayos digitales. D. Escotaduras entre los rayos digitales. E. Dedos unidos por membranas. F. Dedos separados. G. Esbozo de la pierna. H. Placa de pie en pala. I. Rayos digitales. J. Escotaduras entre los rayos. K. Dedos unidos por membrana. L Dedos separados.

2. Fig.17-1 Esquemas en los cuales se ilustran distintos periodos del desarrollo de manos y pies entre la cuarta y la séptima semanas. Las primeras etapas son semejantes para manos y pies, excepto que el desarrollo de las manos precede al de los pies en unos días.

Con esta información yo no tengo que calcular, definir, inferir, descifrar el orden de los cambios. La naturaleza nos los muestra con toda claridad. Todo lo que tenemos que hacer es aprender a escuchar y a observar la naturaleza.

Pregunta: ¿En dónde van a encontrar los darwinistas fósiles etapa por etapa de evolución que nos los obligue a calcular, definir, inferir, descifrar el orden de los cambios?

Con mi teoría, ahí, en los procesos que se llevan a cabo en ovarios, testículos, hueveras y en la gestación, cada especie de acuerdo a sí misma, se encuentra la bitácora completa de la evolución.

Sin lugar a dudas en este estudio se aproximan, en ocasiones, a mis conceptos. Sin embargo, de inmediato dan a conocer que no conocen el patrón de cambios.

¿Cuándo preferirán los darwinistas la vergüenza de haber estado equivocados por tanto tiempo y participar en los nuevos estudios, que la vergüenza de seguir equivocados y quedarse en el pasado?

Disponible para pláticas sobre mi teoría

Félix Rocha Martínez
Saltillo, Coahuila, México
| enlace permanente | ( 3 / 741 )
Big Idea: Bring Ancient Voices Back to Life
miércoles, enero 16, 2013, 02:13 AM
i56b Big Idea: Bring Ancient Voices Back to Life, January 15 2013

Following you will find a transcription of the article Big Idea: Bring Ancient Voices Back to Life found in Discover 08.09.2012 by Jill Neimark. At the end please find my request to Marguerite Humeau and to Bart de Boer.

Rebuilding the vocal tracts of extinct creatures could let us hear long-lost sounds: an ancient whale song, the cries of our ancestors.

The call of the wild has just gotten wilder. Along with bellowing lions and honking geese, you can now hear woolly mammoths that died out 14,000 years ago, the mating call of a now-extinct Hawaiian bird, and even a 3-million-year-old human ancestor, Lucy. Using three-dimensional imaging and a burgeoning knowledge of ancient anatomies, scientists can now rebuild ancient creatures’ vocal tracts and re-create their sounds.

Take our ancestor Lucy (Australopithecus afarensis), who stood less than four feet tall, swung from tree branches, and ran easily along the ground on two feet more than 3 million years ago. What did that diminutive prehuman sound like as she called to her kin?

Lucy could not speak the way we do, because she most likely had air sacs, balloon-shaped organs that attach to an extension of the hyoid bone, says Bart de Boer, an expert in the evolution of speech at Vrije University in Brussels. In modern humans, who lack air sacs, that bone supports the tongue muscles, enabling a wide range of vocalizations. “Air sacs make sounds louder and lower-pitched, just the way a musical instrument sounds lower and louder when it’s bigger,” de Boer continues. “I was in Brazil recently and heard howler monkeys in the wild. They sounded like scary monsters because of their air sacs.”

Such sounds may help fend off predators, though among great apes they are used mostly to impress each other. Air sacs may also have enabled creatures to make long, repeated calls without hyperventilating. But like bass drums, what they add in force they lose in precision.

On a computer, de Boer modeled the acoustic effect of air sacs and then built an actual model of a vocal tract of a Lucy-like creature, incorporating plastic tubing and a chamber to mimic an air sac. He forced air through the tubing to create various vowel sounds and found that test listeners had a harder time distinguishing them when air sacs were present than when they were not. With this kind of anatomy, de Boer says, Lucy’s vowels would have merged together until they were almost indistinguishable. The easiest vowel sound to make when air sacs are present is “uh.” To human ears, our ancestor might have sounded perpetually bewildered and yet a bit scary: “Duh ... duh ... duh ....”

A Mammoth Noise

French artist Marguerite Humeau sculpted Lucy’s vocal tract, which today sits in the permanent collection of the Museum of Modern Art in New York. She is also working on the vocal tract of the woolly mammoth. The mammoth’s white bones look like whorled ice cream, with an enormous tusk jutting into space. “I looked at archived larynxes of the mammoth’s descendant, the Asian elephant,” Humeau says, “along with photographs and scans of woolly mammoths preserved in ice in Siberia. And I created organs—such as the lungs, trachea, and larynx—with vibrating vocal chords, as well as nose and mouth cavities for resonance.” Then she added an air compressor to mimic the lungs sending air through the vocal tract. She also included a subwoofer to emulate the mammoth’s original volume. The result: “Children run from it when it roars,” she jokes.

Humeau’s next installation will re-create the sound of an extinct walking whale and the hell pig, a piglike omnivore that vanished about 16 million years ago. Working with composers and sound innovators, she hopes to have the animals communicate with each other via a computer program that would allow various parts of her exhibit to listen to each other and respond. “It’s almost like raising the dead,” she says. “You get these dark, deep sounds coming at you from millions of years ago.”

Ghostly Birdsongs

A creature’s call is more poignant and present than even the most perfectly preserved bone or tooth. John Fitzpatrick, director of the Cornell Laboratory of Ornithology in Ithaca (which houses the world’s largest collection of animal sounds, nearly 200,000 clips), begins public lectures by playing a “jazzlike, haunting mating call that delights the audience until they learn that it is the call of the extinct Kauai Oo, recorded in the 1970s.” Once common on the Hawaiian islands, the bird was answering a recording played by a scientist. “That bird has gone forever.”

Even more legendary is the call of the ivory-billed woodpecker, which sounds like the rubber horn on a toddler’s tricycle, bleating with the rhythm of a metronome and conveying a certain goofy joy. It was first recorded in 1935 in a Louisiana swamp, “when scientists dragged wagons’ worth of machinery used in early talkie films,” Fitzpatrick says. Cornell researchers are still seeking the woodpecker, which was thought extinct but may have been spotted in 2004. They use audio spectrography, which analyzes birdsong on a computer, to compare calls of woodpeckers in the swamps to that of the elusive bird.

Lately the Cornell Ornithology Laboratory has been working with artist Maya Lin, designer of the Vietnam Veterans Memorial in Washington, D.C. She is crafting a multimedia artwork called “What Is Missing," which includes the sounds of extinct and endangered species. Lin says, “This is my last memorial. I’ll be working on this until the day I die, because I believe we are degrading our habitat so rapidly that we’re in the sixth mass extinction.” The sounds of the Chinese river dolphin, the dusty seaside sparrow, the golden toad, and untold numbers of other animals have left the planet.
“I also showcase the sounds of endangered species, ones we can still save,” Lin says. “We’ve even got the sound of an endangered coral reef, which sounds like Rice Krispies crackling in milk.”

Sounds of the Jurassic

The voices of woolly mammoths and 3-million-year-old human ancestors are far from the only ones scientists have revived. Teams are reconstructing sounds from as far back as the Jurassic, a period when dinosaurs lived.

Walking Whale French artist Marguerite Humeau has re-created the song of Ambulocetus, a mammal that walked on land and swam like an otter. The 10-foot-long carnivore lived 50 million years ago in Pakistan. It produced high-pitched calls that probably traveled great distances. Her sculpture of the creature’s vocal tract is on display now through January 2013 at Cité du Design in central France.

Parasaurolophus Scientists at Sandia National Labs scanned the skull and crest of this plant-eating, duckbilled dinosaur and fed the data through a computer simulation to generate the sound it might have made 73 million years ago. If the dino had vocal cords, it voiced a low-pitched bird call. If not, it sounded more like the drone of a bullfrog.

Jurassic Cricket Biologists in Beijing determined the mating call of a 165-million-year-old male katydid by measuring fossils of the noisemaking apparatus in the insect’s wings. It seems the cricket produced a low-pitched chirp to attract females.

(End of transcription)

Request to Marguerite Humeau and to Bart de Boer:

Rebuild the vocal tracts of the Boskop fossils and make a comparative of them with those of Lucy, of the present human being, of hominids of the same epoch of the Boskop and of present apes most similar to human beings.

The reasons for this request you may find them in the following articles in this same blog:

1.- The extinct Human Species That Was Smarter than Us

2.- If Modern Humans Are So Smart, Why Are Our Brains Shrinking?

Available for talks over my theory

Felix Rocha-Martinez
Saltillo, Coahuila, México
| enlace permanente | ( 3 / 725 )
Gran idea: Regresar a la vida las antiguas voces
martes, enero 15, 2013, 02:21 AM
e56i Gran idea: Regresar a la vida las antiguas voces, 15 de enero de 2013

A continuación hallarán mi traducción al articulo Big Idea: Bring Ancient Voices Back to Life (Gran idea: Regresar a la vida las antiguas voces) de Discover 08/09/2012 por Jill Neimark y mi solicitud a Marguerite Humeau y a Bart de Boer al final.

La reconstrucción de los tractos vocales de criaturas extintas podría permitirnos oír sonidos perdidos hace mucho tiempo: un antiguo canto de las ballenas, los gritos de nuestros antepasados.

La llamada de la naturaleza acaba de hacerse más salvaje. Junto con los leones rugiendo y gansos haciendo sus sonidos peculiares, ahora usted puede escuchar a los mamuts lanudos que se extinguieron hace 14,000 años, la llamada de apareamiento de un pájaro ahora extinto de Hawai, e incluso un antepasado humano de hace 3 millones de años, Lucy. Con el uso de imágenes tridimensionales y un conocimiento creciente de las antiguas anatomías, los científicos ahora pueden reconstruir los tractos vocales de las antiguas criaturas y volver a crear sus sonidos.

Considere a nuestro ancestro Lucy (Australopithecus afarensis), que se alzaba menos de 1.2 metros de altura, pasó de unas ramas a otras de los árboles, y corrió con facilidad por el suelo con dos pies hace más de 3 millones de años. ¿Qué sonido hacía la diminuta prehumana cuando ella llamaba a sus parientes?

Lucy no podía hablar como lo hacemos nosotros, porque lo más probable es que haya tenido sacos de aire, órganos en forma de globo que se adhieren a una extensión del hueso hioides, dice Bart de Boer, un experto en la evolución del habla en la Universidad de Vrije, en Bruselas. En los seres humanos modernos, que carecen de sacos de aire, el hueso soporta los músculos de la lengua, lo que permite una amplia gama de vocalizaciones. "Los sacos de aire hacen sonidos más fuertes y de tono más bajo, tal y como un instrumento musical suena más bajo y más fuerte cuando es más grande", continúa de Boer, "Yo estaba en Brasil recientemente y oí a los monos aulladores en estado silvestre. Sonaban como monstruos que dan miedo, debido a sus bolsas de aire".

Estos sonidos pueden ayudar a defenderse de los depredadores, aunque entre los grandes simios se utilizan sobre todo para impresionarse unos a los otros. Las bolsas de aire también pudieran haber permitido a las criaturas hacer llamadas largas repetidas sin hiperventilación. Pero, como tambores de sonido bajo, lo que añade en fuerza pierde en precisión.

En una computadora, de Boer modeló el efecto acústico de sacos de aire y luego construyó un modelo real de un tracto vocal de una criatura parecida a Lucy, incorporando un tubo de plástico y una cámara para imitar un saco de aire. El aire forzado a través del tubo creó diferentes sonidos vocálicos y encontró que los oyentes de la prueba tuvieron más dificultades para distinguir cuando los sacos de aire estaban presentes que cuando no lo estaban. Con esta clase de anatomía, de Boer dice, las vocales de Lucy se fusionaron entre sí hasta que eran casi indistinguibles. El sonido de la vocal más fácil de hacer cuando están presentes los sacos de aire es "Uh" para el oído humano, nuestro antepasado podría haber sonado perpetuamente desconcertado y sin embargo daba un poco de miedo: "Duh... duh... duh.... "

Un sonido del Mamut

La artista francesa Marguerite Humeau esculpió el tracto vocal de Lucy, que hoy se encuentra en la colección permanente del Museo de Arte Moderno de Nueva York. Ella también está trabajando en el tracto vocal del mamut lanudo. Los blancos huesos del mamut parecen helados de nieve esculpidos en espiral, con colmillos enormes que se proyectan al espacio. "Observé a las laringes archivadas de los descendientes del mamut, los elefantes asiáticos," Humeau dice, "junto con las fotografías y las exploraciones de los mamuts conservados en hielo en Siberia. Y he creado órganos, como los pulmones, la tráquea, la laringe y cuerdas vocales con vibraciones, así como la nariz y las cavidades de resonancia de la boca. "Luego añadí un compresor de aire para simular el envío de aire a los pulmones a través del tracto vocal. También incluye un regulador para emular volumen original de los mamuts. El resultado: "Los niños corren para alejarse del mamut cuando ruge", bromea.

La próxima tarea de Humeau es recrear el sonido de una ballena caminante extinta y el cerdo infierno, un omnívoro parecido al puerco que desapareció cerca de hace 16 millones de años. Al trabajar con compositores e innovadores de sonido, espera tener a los animales comunicándose entre sí a través de un programa de computadora que permitiría varias partes de su exposición escucharse el uno al otro y responder. "Es casi como resucitar a los muertos", dice ella. "Usted recibe estos sonidos oscuros y profundos que le llegan a usted de hace millones de años".

El canto de los pájaros fantasmales

La llamada de una criatura es más conmovedora y presente que incluso el diente o el hueso en el más perfecto estado de conservación. John Fitzpatrick, director del Laboratorio de Ornitología de Cornell, en Ithaca (que alberga la mayor colección del mundo de los sonidos de los animales, cerca de 200,000 clips), comienza las conferencias públicas, poniendo un "llamado inquietante de apareamiento parecido al jazz, que hace las delicias del público hasta que se enteran que es la llamada de la extinta Oo Kauai, grabada en la década de 1970. "Una vez común en las islas de Hawai, el ave estaba respondiendo a una grabación interpretada por un científico. "Ese pájaro se ha ido para siempre".

Aún más legendaria es la llamada del pájaro carpintero pico de marfil, que suena como la bocina de hule en el triciclo de un niño pequeño, balando con el ritmo de un metrónomo y transmitiendo con una cierta alegría tonta. Fue registrada por primera vez en 1935 en un pantano de Louisiana, "cuando los científicos transportaron vagones llenos de la maquinaria utilizada en las primeras películas habladas", dice Fitzpatrick. Investigadores de Cornell siguen buscando el pájaro carpintero, que se creía extinto, pero pudo haber sido visto en 2004. Ellos usaron la espectrografía de audio, que analiza el canto de los pájaros en un ordenador, para comparar los llamados de los pájaros carpinteros en el pantano al del pájaro esquivo.

Últimamente, el Laboratorio de Ornitología de Cornell ha estado trabajando con la artista Maya Lin, diseñadora del Monumento a los Veteranos de Vietnam en Washington, DC. Ella está elaborando una obra de arte multimedia llamada "Lo que falta", que incluye los sonidos de las especies extintas y en peligro de extinción., Dice Lin, "Este es mi último memorial. Voy a estar trabajando en esto hasta el día que muera, porque creo que estamos degradando nuestro hábitat con tanta rapidez que estamos en la sexta extinción en masa”. Los sonidos del delfín de río chino, el gorrión marino polvoso, el sapo dorado, y un número incalculable de otros animales que han dejado el planeta.

"También mostraré los sonidos de especies amenazadas de extinción, aquellas que todavía podemos salvar", dice Lin. "Incluso tenemos el sonido de un arrecife de coral en peligro de extinción, que suena como el crujido de Rice Krispies en la leche".

Sonidos del Jurásico

Las voces de los mamuts lanudos y ancestros humanos de hace 3 millones de años están lejos de ser los únicos que los científicos han revivido. Los equipos están reconstruyendo los sonidos de una fecha tan lejana como la del Jurásico, cuando vivieron los dinosaurios.

La artista francesa Marguerite Humeau de “Walking Dead” ha vuelto a crear la canción del Ambulocetus, un mamífero que caminaba sobre la tierra y nadaba como una nutria. El carnívoro de 3 metros de largo vivió hace 50 millones de años en Pakistán. Producía llamadas de tono alto que probablemente viajaron grandes distancias. Su escultura del tracto vocal de la criatura se encuentra en exhibición desde ahora hasta enero 2013 en la Cité du Design en el centro de Francia.

Los científicos que estudian al Parasaurolophus en el Laboratorio Nacional Sandia escanean el cráneo y la cresta de este dinosaurio herbívoro, pico de pato y alimentaron los datos a través de una simulación por ordenador para generar el sonido que podrían haber hecho hace 73 millones de años. Si el dinosaurio tenía cuerdas vocales, expresó su canto como el de un pájaro de tono bajo. Si no tenía cuerdas vocales, entonces sonaba más como el zumbido de un sapo.

Los biólogos del Jurásico de Cricket en Pekín determinaron la llamada de apareamiento de un saltamontes masculino de hace 165 millones de años, mediante la medición de los fósiles del aparato de hacer ruido en las alas del insecto. Al parecer, el grillo producía un sonido de tono bajo para atraer a las hembras.

(Fin de traducción)

Solicitud a Marguerite Humeau y a Bart de Boer:

Recrear los tractos vocales de los fósiles de los boskops y hacer un comparativo de ellos con los de Lucy, el ser humano presente, de homínidos de la misma época que los boskops y de simios presentes más similares al ser humano.

Las razones para esta solicitud las pueden encontrar en los siguientes artículos de este mismo blog:

1.- “La especie humana extinta que fue más inteligente que nosotros”.

2.- Si los humanos modernos son tan inteligentes ¿Por qué nuestros cerebros se están encogiendo?

Disponible para pláticas sobre mi teoría

Félix Rocha Martínez
Saltillo, Coahuila, México
| enlace permanente | ( 3 / 830 )
Commentaries to Discover Interview, The Radical Linguist Noam Chomsky
domingo, enero 6, 2013, 05:28 AM
i55b The Radical Linguist Noam Chomsky January 06, 2013

Discover Interview: The Radical Linguist Noam Chomsky, Discover magazine´s November 29, 2011 edition By Marion Long and Valerie Ross. (In parenthesis you will find my commentaries).

Over 50 years ago, he began a revolution that's still playing out today.

For centuries experts held that every language is unique. Then one day in 1956, a young linguistics professor gave a legendary presentation at the Symposium on Information Theory at MIT. He argued that every intelligible sentence conforms not only to the rules of its particular language but to a universal grammar that encompasses all languages. And rather than absorbing language from the environment and learning to communicate by imitation, children are born with the innate capacity to master language, a power imbued in our species by evolution itself. Almost overnight, linguists’ thinking began to shift.


Avram Noam Chomsky was born in Philadelphia on December 7, 1928, to William Chomsky, a Hebrew scholar, and Elsie Simonofsky Chomsky, also a scholar and an author of children’s books. While still a youngster, Noam read his father’s manuscript on medieval Hebrew grammar, setting the stage for his work to come. By 1955 he was teaching linguistics at MIT, where he formulated his groundbreaking theories. Today Chomsky continues to challenge the way we perceive ourselves.

Language is “the core of our being,” he says. “We are always immersed in it. It takes a strong act of will to try not to talk to yourself when you’re walking down the street, because it’s just always going on.”

Chomsky also bucked against scientific tradition by becoming active in politics. He was an outspoken critic of American involvement in Vietnam and helped organize the famous 1967 protest march on the Pentagon. When the leaders of the march were arrested, he found himself sharing a cell with Norman Mailer, who described him in his book Armies of the Night as “a slim, sharp-featured man with an ascetic expression, and an air of gentle but absolute moral integrity.”

Chomsky discussed his ideas with Connecticut journalist Marion Long after numerous canceled interviews. “It was a very difficult situation,” Long says. “Chomsky’s wife was gravely ill, and he was her caretaker. She died about 10 days before I spoke with him. It was Chomsky’s first day back doing interviews, but he wanted to go through with it.” Later, he gave even more time to DISCOVER reporter Valerie Ross, answering her questions from his storied MIT office right up to the moment he dashed off to catch a plane.

You describe human language as a unique trait. What sets us apart?

Humans are different from other creatures, and every human is basically identical in this respect. If a child from an Amazonian hunter-gatherer tribe comes to Boston, is raised in Boston, that child will be indistinguishable in language capacities from my children growing up here, and vice versa. This unique human possession, which we hold in common, is at the core of a large part of our culture and our imaginative intellectual life. That’s how we form plans, do creative art, and develop complex societies.

When and how did the power of language arise?

If you look at the archaeological record, a creative explosion shows up in a narrow window, somewhere between 150,000 and roughly 75,000 years ago. All of a sudden, there’s an explosion 
of complex artifacts, symbolic representation, measurement of celestial events, complex social structures–a burst of creative activity that almost every expert on prehistory assumes must have been connected with the sudden emergence of language. And it doesn’t seem to be connected with physical changes; the articulatory and acoustic [speech and hearing] systems of contemporary humans are not very different from those of 600,000 years ago. There was a rapid cognitive change. Nobody knows why.

(According to my theory, in those times a man and a woman were one human being, a self reproductive hermaphrodite. What the authors said in the previous paragraph is the evidence of the beginning of the presence of males in a sporadic and isolated manner. A man has the power of creating mental images from origin, from birth, a capacity that neither hermaphrodites nor women have and that allows a male to have the potential to create art, technology and science from birth. In the article i45b Not Out of Africa But Regional Continuity we have the presence of Mungo Man in the Australian Continent. In Chile, in the extraordinary archeological site of Monteverde, it was found very old human fossils but since they did not comply to Darwin´s expectations the easiest thing was to dismiss them. In Africa, there were found some 3,000 Oldowan rocks [belonging to very anterior times] were fractured by human beings along 800,000 years. In my opinion, a man taught hermaphrodites how to fracture them, he could not reproduce and hermaphrodites kept fracturing rocks the same way for 800,000 years.

Allow me to present to you drawing 8c from my book “Cicatrices, New Theory of Evolution” in which I explain the evidences of the emergence of a male born from a hermaphrodite, and now in a continuous manner, in Afghanistan or North Pakistan. When the baby boy reached sexual maturity copulated with all available or possible hermaphrodites and the products of those encounters were almost half of feminine sex and a little more than half of masculine sex [by sexual maturity they were about the same amount in both sexes]. In this way only one generation later there was one female for each male in that group. The more “restless” males showed their disgust for this environment leaving the group to search for other hermaphrodite groups [where he would have at his disposal an entire group of hermaphrodites and the process would repeat itself]. One male went to North China and the other to South China and in time they were united to make Mandarin the predominant language with 6 other languages as a family. Another male traveled to the south and made Sanscrit the predominant language with other 9 groups of languages as a grand family of languages: Sanskrit, Hindu, Iranian, [of which aramean is part of it], Armenian, Balto-Slavic, Germanic, Celt, Greek and Latin. With the emergence of the male started a process of elimination of languages that continues up to today. This process also allows us to know what worked out as the reason for the enormous populations of two countries: China and India. The males that arrived to those places stayed in them while the ones that traveled in the direction of Europe distributed their energy in many places).

What first sparked your interest in human language?

I read modern Hebrew literature and other texts with my father from a very young age. It must have been around 1940 when he got his Ph.D. from Dropsie College, a Hebrew college in Philadelphia. He was a Semitist, working on medieval Hebrew grammar. I don’t know if I officially proofread my father’s book, but I read it. I did get some conception of grammar in general from that. But back then, studying grammar meant organizing the sounds, looking at the tense, making a catalog of those things, and seeing how they fit together.

Linguists have distinguished between historical grammars and descriptive grammars. What is the difference between the two?

Historical grammar is a study of how, say, modern English developed from Middle English, and how that developed from Early and Old English, and how that developed from Germanic, and that developed from what’s called Proto-Indo-European, a source system that nobody speaks so you have to try to reconstruct it. It is an effort to reconstruct how languages developed through time, analogous to the study of evolution. Descriptive grammar is an attempt to give an account of what the current system is for either a society or an individual, whatever you happen to be studying. It is kind of like the difference between evolution and psychology.

And linguists of your father’s era, what did they do?

They were taught field methods. So, suppose you wanted to write a grammar of Cherokee. You would go into the field, and you would elicit information from native speakers, called informants.

What sort of questions would the linguists ask?

Suppose you’re an anthropological linguist from China and you want to study my language. The first thing you would try to do is see what kind of sounds I use, and then you’d ask how those sounds go together. So why can I say “blick” but not “bnick,” for example, and what’s the organization of the sounds? How can they be combined? If you look at the way word structure is organized, is there a past tense on a verb? If there is, does it follow the verb or does it precede the verb, or is it some other kind of thing? And you’d go on asking more and more questions like that.

But you weren’t content with that approach. Why not?

I was at Penn, and my undergraduate thesis topic was the modern grammar of spoken Hebrew, which I knew fairly well. I started doing it the way we were taught. I got a Hebrew-speaking informant, started asking questions and getting the data. At some point, though, it just occurred to me: This is ridiculous! I’m asking these questions, but I already know the answers.

Soon you started developing a different approach to linguistics. How did those ideas emerge?

Back in the early 1950s, when I was a graduate student at Harvard, the general assumption was that language, like all other human activities, is just a collection of learned behaviors developed through the same methods used to train animals—by reinforcement. That was virtually dogma at the time. But there were two or three of us who didn’t believe it, and we started to think about other ways of looking at things.

In particular, we looked at a very elementary fact: Each language provides a means to construct and interpret infinitely many structured expressions, each of which has a semantic interpretation and an expression in sound. So there’s got to be what’s called a generative procedure, an ability to generate infinite sentences or expressions and then to connect them to thought systems and to sensory motor systems. One has to begin by focusing on this central property, the unbounded generation of structured expressions and their interpretations. Those ideas crystallized and became part of the so-called biolinguistic framework, which looks at language as an element of human biology, rather like, say, the visual system.

You theorized that all humans have “universal grammar.” What is that?

It refers to the genetic component of the human language faculty. Take your last sentence, for example. It’s not a random sequence of noises. It has a very definite structure, and it has a very specific semantic interpretation; it means something, not something else, and it sounds a particular way, not some other way. Well, how do you do that? There are two possibilities. One, it’s a miracle. Or two, you have some internal system of rules that determines the structures and the interpretations. I don’t think it’s a miracle.

(Due to the fact that we have an internal system of rules that determine the structure and the interpretations, babes are able to learn the language or languages to which they are exposed and there is not such a thing as any one language is more difficult than any other. The language or languages to which they are exposed are the ones babies are going to learn. The requirements to learn them are: 1.- The exposition to the language has to be in bulk, that is in person, preferably with movements and gesticulations according to the spoken word. If to a baby you expose to a recorded voice it would be registered as noise the baby would not learn any language that way. 2.- There must be continuity in the exposition. The baby must be exposed to the languages on a daily basis. 3.- Preferably there must be more than one person talking to the baby in each language to be learned. This will give the baby the advantagemo9f learning an automatic way that each person has his or her own vocabulary and style. This is nothing new, it is done in a natural way at the borders between countries with different languages and babies learn several languages where the neighboring countries are very small. In Europe there are very many people that speak several languages since they are babies).

What were the early reactions to your linguistic ideas?

At first, people mostly dismissed or ignored them. It was the period of behavioral science, the study of action and behavior, including behavior control and modification. Behaviorism held that you could basically turn a person into anything, depending on how you organized the environment and the training procedures. The idea that a genetic component entered crucially into this was considered exotic, to put it mildly.

Later, my heretical idea was given the name “the innateness hypothesis,” and there was a great deal of literature condemning it. You can still read right now, in major journals, that language is just the result of culture and environment and training. It’s a commonsense notion, in a way. We all learn language, so how hard could it be? We see that environmental effects do exist. People growing up in England speak English, not Swahili. And the actual principles—they’re not accessible to consciousness. We can’t look inside ourselves and see the hidden principles that organize our language behavior any more than we can see the principles that allow us to move our bodies. It happens internally.

How do linguists go about searching for these hidden principles?

You can find information about a language by collecting a corpus of data—for instance, the Chinese linguist studying my language could ask me various questions about it and collect the answers. That would be one corpus. Another corpus would just be a tape recording of everything I say for three days. And you can investigate a language by studying what goes on in the brain as people learn or use language. Linguists today should concentrate on discovering the rules and principles that you, for example, are using right now when you interpret and comprehend the sentences I’m producing and when you produce your own.

Isn’t this just like the old system of grammar that you rejected?

No. In the traditional study of grammar, you’re concentrating on the organization of sounds and word formation and maybe a few observations about syntax. In the generative linguistics of the last 50 years, you’re asking, for each language, what is the system of rules and principles that determines an infinite array of structured expressions? Then you assign specific interpretations to them.

Has brain imaging changed the way we understand language?

There was an interesting study of brain activity in language recently conducted by a group in Milan. They gave subjects two types of written materials based on nonsense language. One was a symbolic language modeled on the rules of Italian, though the subjects didn’t know that. The other was devised to violate the rules of universal grammar. To take a particular case, say you wanted to negate a sentence: “John was here, John wasn’t here.” There are particular things that you are allowed to do in languages. You can put the word “not” in certain positions, but you can’t put it in other positions. So one invented language put the negation element in a permissible place, while the other put it in an impermissible place. The Milan group seems to have found that permissible nonsense sentences produced activity in the language areas of the brain, but the impermissible ones—the ones that violated principles of universal grammar—did not. That means the people were just treating the impermissible sentences as a puzzle, not as language. It’s a preliminary result, but it strongly suggests that the linguistic principles discovered by investigating languages have neurocorrelates, as one would expect and hope.

Recent genetic studies also offer some clues about language, right?

In recent years a gene has been discovered called FOXP2. This gene is particularly interesting because mutations on it correspond with some deficiencies in language use. It relates to what’s called orofacial activation, the way you control your mouth and your face and your tongue when you speak. So FOXP2 plausibly has something to do with the use of language. It’s found in many other organisms, not just humans, and functions in many different ways in different species; these genes don’t do one single thing. But that’s an interesting preliminary step toward finding a genetic basis for some aspects of language.

You say that innate language is uniquely human, yet FOXP2 shows a continuity among species. Is that a contradiction?

It’s almost meaningless that there’s a continuity. Nobody doubts that the human language faculty is based on genes, neurons, and so on. The mechanisms that are involved in the use, understanding, acquisition, and production of language at some level show up throughout the animal world, and in fact throughout the organic world; you find some of them in bacteria. But that tells you almost nothing about evolution or common origins. The species that are maybe most similar to humans with regard to anything remotely like language production are birds, but that’s not due to common origin. It’s what’s called convergence, a development of somewhat analogous systems independently. FOXP2 is quite interesting, but it’s dealing with fairly peripheral parts of language like [physical] language production. Whatever’s discovered about it is unlikely to have much of an effect on linguistic theory.

(Genes are the building blocks that have more than one function and that additionally they can associate to have additional functions. The first important genome deciphered was that of the human being. The second one was that of monkey and it ended being 98 % similar to the human being one. Darwinists were prone to say “I told you so, human beings and monkeys are related”. Then the mice genome was deciphered and it resulted 99% similar to the human being one, Does it mean that first we were monkeys and then mice and then human beings? Of course not, the quantity of genes in common among species says almost nothing about their evolution or a common origin other than the species had similar invasions of bacteria and viruses).

Over the past 20 years you’ve been working on a “minimalist” understanding of language. What does that entail?

Suppose language were like a snowflake; it takes the form it does because of natural law, with the condition that it satisfy these external constraints. That approach to the investigation of language came to be called the minimalist program. It has achieved, I think, some fairly significant results in showing that language is indeed a perfect solution for semantic expression—the meaning—but badly designed for articulate expression, the particular sound you make when you say “baseball” and not “tree.”

What are the outstanding big questions in linguistics?

There are a great many blanks. Some are “what” questions, like: What is language? What are the rules and principles that enter into what you and I are now doing? Others are “how” questions: How did you and I acquire this capacity? What was it in our genetic endowment and experience and in the laws of nature? And then there are the “why” questions, which are much harder: Why are the principles of language this way and not some other way? To what extent is it true that the basic language design yields an optimal solution to the external conditions that language must satisfy? That’s a huge problem. To what extent can we relate what we understand about the nature of language to activity taking place in the brain? And can there be, ultimately, some serious inquiry into the genetic basis for language? In all of these areas there’s been quite a lot of progress, but huge gaps remain.

Every parent has marveled at the way children develop language. It seems incredible that we still know so little about the process.

We now know that an infant, at birth, has some information about its mother’s language; it can distinguish its mother’s language from some other language when both are spoken by a bilingual woman. There are all kinds of things going on in the environment, what William James called a “blooming, buzzing confusion.” Somehow the infant reflexively selects out of that complex environment the data that are language-related. No other organism can do that; a chimpanzee can’t do that. And then very quickly and reflexively the infant proceeds to gain an internal system, which ultimately yields the capacities that we are now using. What’s going on in the [infant’s] brain? What elements of the human genome are contributing to this process? How did these things evolve?

What about meaning at a higher level? The classic stories that people retell from generation to generation have a number of recurring themes. Could this repetition indicate something about innate human language?

In one of the standard fairy tales, the handsome prince is turned into a frog by the wicked witch, and finally the beautiful princess comes around and kisses the frog, and he’s the prince again. Well, every child knows that the frog is actually the prince, but how do they know it? He’s a frog by every physical characteristic. What makes him the prince? It turns out there is a principle: We identify persons and animals and other living creatures by a property that’s called psychic continuity. We interpret them as having some kind of a mind or a soul or something internal that persists independent of their physical properties. Scientists don’t believe that, but every child does, and every human knows how to interpret the world that way.

You make it sound like the science of linguistics is just getting started.

There are many simple descriptive facts about language that just aren’t understood: how sentences get their meaning, how they get their sound, how other people comprehend them. Why don’t languages use linear order in computation? For example, take a simple sentence like “Can eagles that fly swim?” You understand it; everyone understands it. A child understands that it’s asking whether eagles can swim. It’s not asking whether they can fly. You can say, “Are eagles that fly swimming?” You can’t say, “Are eagles that flying swim?” Meaning, is it the case that eagles that are flying swim? These are rules that everyone knows, knows reflexively. But why? It’s still quite a mystery, and the origins of those principles are basically unknown.

Available for talks over my theory.

Felix Rocha-Martinez
Saltillo, Coahuila, Mexico
| enlace permanente | ( 3 / 782 )

Anterior Siguiente